Class Ed25519LittleEndianEncoding
- java.lang.Object
- 
- net.i2p.crypto.eddsa.math.Encoding
- 
- net.i2p.crypto.eddsa.math.ed25519.Ed25519LittleEndianEncoding
 
 
- 
- All Implemented Interfaces:
- Serializable
 
 public class Ed25519LittleEndianEncoding extends Encoding Helper class for encoding/decoding from/to the 32 byte representation.Reviewed/commented by Bloody Rookie (nemproject@gmx.de) - See Also:
- Serialized Form
 
- 
- 
Constructor SummaryConstructors Constructor Description Ed25519LittleEndianEncoding()
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldElementdecode(byte[] in)Decodes a given field element in its 10 byte $2^{25.5}$ representation.byte[]encode(FieldElement x)Encodes a given field element in its 32 byte representation.booleanisNegative(FieldElement x)Is the FieldElement negative in this encoding?(package private) static intload_3(byte[] in, int offset)(package private) static longload_4(byte[] in, int offset)
 
- 
- 
- 
Method Detail- 
encodepublic byte[] encode(FieldElement x) Encodes a given field element in its 32 byte representation. This is done in two steps:- Reduce the value of the field element modulo $p$.
- Convert the field element to the 32 byte representation.
 The idea for the modulo $p$ reduction algorithm is as follows: Assumption:- $p = 2^{255} - 19$
- $h = h_0 + 2^{25} * h_1 + 2^{(26+25)} * h_2 + \dots + 2^{230} * h_9$ where $0 \le |h_i| \lt 2^{27}$ for all $i=0,\dots,9$.
- $h \cong r \mod p$, i.e. $h = r + q * p$ for some suitable $0 \le r \lt p$ and an integer $q$.
 Then $q = [2^{-255} * (h + 19 * 2^{-25} * h_9 + 1/2)]$ where $[x] = floor(x)$. Proof:We begin with some very raw estimation for the bounds of some expressions: $$ \begin{equation} |h| \lt 2^{230} * 2^{30} = 2^{260} \Rightarrow |r + q * p| \lt 2^{260} \Rightarrow |q| \lt 2^{10}. \\ \Rightarrow -1/4 \le a := 19^2 * 2^{-255} * q \lt 1/4. \\ |h - 2^{230} * h_9| = |h_0 + \dots + 2^{204} * h_8| \lt 2^{204} * 2^{30} = 2^{234}. \\ \Rightarrow -1/4 \le b := 19 * 2^{-255} * (h - 2^{230} * h_9) \lt 1/4 \end{equation} $$ Therefore $0 \lt 1/2 - a - b \lt 1$. Set $x := r + 19 * 2^{-255} * r + 1/2 - a - b$. Then: $$ 0 \le x \lt 255 - 20 + 19 + 1 = 2^{255} \\ \Rightarrow 0 \le 2^{-255} * x \lt 1. $$ Since $q$ is an integer we have $$ [q + 2^{-255} * x] = q \quad (1) $$ Have a closer look at $x$: $$ \begin{align} x &= h - q * (2^{255} - 19) + 19 * 2^{-255} * (h - q * (2^{255} - 19)) + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * (h - 2^{230} * h_9) \\ &= h - q * 2^{255} + 19 * q + 19 * 2^{-255} * h - 19 * q + 19^2 * 2^{-255} * q + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * h + 19 * 2^{-25} * h_9 \\ &= h + 19 * 2^{-25} * h_9 + 1/2 - q^{255}. \end{align} $$ Inserting the expression for $x$ into $(1)$ we get the desired expression for $q$. 
 - 
load_3static int load_3(byte[] in, int offset)
 - 
load_4static long load_4(byte[] in, int offset)
 - 
decodepublic FieldElement decode(byte[] in) Decodes a given field element in its 10 byte $2^{25.5}$ representation.
 - 
isNegativepublic boolean isNegative(FieldElement x) Is the FieldElement negative in this encoding?Return true if $x$ is in $\{1,3,5,\dots,q-2\}$ 
 Return false if $x$ is in $\{0,2,4,\dots,q-1\}$Preconditions: - $|x|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25}$, etc.
 - Specified by:
- isNegativein class- Encoding
- Parameters:
- x- the FieldElement to check
- Returns:
- true if $x$ is in $\{1,3,5,\dots,q-2\}$, false otherwise.
 
 
- 
 
-